69. Combination Sum

Given a set of candidate numbers (candidates) (without duplicates) and a target number (target), find all unique combinations in candidates where the candidate numbers sums to target.

The same repeated number may be chosen from candidates unlimited number of times.

Note:

All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.

Example 1:
Input: candidates = [2,3,6,7], target = 7,
A solution set is:
[
[7],
[2,2,3]
]

Example 2:
Input: candidates = [2,3,5], target = 8,
A solution set is:
[
[2,2,2,2],
[2,3,3],
[3,5]
]

解题思路:
考虑两个条件:

  • 组合元素可以重复
  • 和为 target
    递归三要素:
  • 递归的定义
    找到所有和为 target 的组合,放到 result
  • 递归的拆解

  • 递归的出口

class Solution {
    public List<List<Integer>> combinationSum(int[] candidates, int target) {
        List<List<Integer>> results = new ArrayList<>();
        if (candidates == null){
            return results;
        }
        List<Integer> combination = new ArrayList<>();
        Arrays.sort(candidates);
        recursion(candidates,0,target,combination,results);
        return results;
    }

    // 1. 递归定义
    public void recursion(int[] candidates,
                         int startIndex,
                         int remainTarget,
                         List<Integer> combination,
                         List<List<Integer>> results){
        // 3. 递归出口
        if (remainTarget == 0){
            results.add(new ArrayList<Integer> (combination));
            return;
        }

        // 2. 递归拆解
        for (int i = startIndex; i< candidates.length;i++){
            if (remainTarget < candidates[i]){
                break;
            }

            if (i!=0 && candidates[i] == candidates[i-1]){
                continue;
            }

            combination.add(candidates[i]);
            recursion(candidates,i,remainTarget - candidates[i], combination,results);
            combination.remove(combination.size()-1);
        }
    }
}

请多多指教。

文章标题:69. Combination Sum

本文作者:顺强

发布时间:2019-09-18, 23:59:00

原始链接:http://shunqiang.ml/leetcode-69-combination-sum/

版权声明: "署名-非商用-相同方式共享 4.0" 转载请保留原文链接及作者。

目录
×

喜欢就点赞,疼爱就打赏